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Abstract—This paper considers the problem of dynamic evac-
uation routing in large smart buildings. We investigate a scalable
routing approach which not only generates effective routes for
evacuees but also quickly updates routes as the disaster status
and building conditions could change during the evacuation time.
We first design a flexible and scalable evacuation system for large
smart buildings with multiple levels of computational support.
Given such a system, we develop a novel distributed algorithm
for finding effective evacuation routes dynamically by using
an LCDT (Length-Capacity-Density-Trustiness) weighted graph
model, which is built upon the current disaster information and
building conditions. Finally, we propose a caching strategy which
expedites dynamic route generation with the current effective
route part(s) in order to improve the performance of dynamic
evacuation in large buildings. To validate our approach, we test
the proposed algorithm with our implementation of an evacuation
simulator and compare the results with other approaches. Exper-
imental results show that our approach outperforms other ones
in the aspect of the evacuation time reduction and the maximum
number of people being evacuated in each time span.

Index Terms—Dynamic Evacuation Routing, Emergence Evac-
uation Systems, Evacuation Simulator, Distributed Graphs

I. INTRODUCTION

With the development of the Internet of Things (IoT),

smart buildings are becoming a reality with the support of

smart devices such as smart indicators, smart sensors, smart

cameras, and RFIDs. These smart devices play an important

role in monitoring and tracking the events/conditions inside

the building to provide useful information which helps the

building management systems to make the right decisions in

emergency situations. One of the indispensable systems in a

large smart building is an emergency evacuation system, which

guides evacuees to pass through exit gates as fast as possible.

In that system, finding effective evacuation routes, which help

to reduce the evacuation time and maximize the number of

evacuees arriving at exit gates, is a hard problem because of

uncertain of hazard conditions and possibility of congestions

during the time of evacuation.

Recently, the weighted graph based approaches using IoT

data in smart buildings have emerged to dynamically find

the evacuation routes more effectively [1]–[3]. Nikolaos et

al. [1] proposed a building evacuation system that computes
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the optimal evacuation routes in real-time. The authors use

indicators (smart panels) as decision nodes to provide di-

rections to evacuees, and a network of sensors in order to

update the hazard intensity between decision nodes. The major

drawback of this approach is the lack of consideration in the

capacity (e.g., corridor width) and the density of evacuees

in the corridors/rooms during evacuation time. Hence, it is

the cause of crowd congestion on the evacuation routes. Sai-

Keung et al. [2] proposed an optimized evacuation route

based on crowd simulation. The authors use capacity and

physical length to make a weighted graph, then they determine

evacuation routes based on the shortest path algorithm. To

reduce congestion on a route having high density, they develop

an algorithm to find a division point which divides evacuees

into two groups and evacuate in opposite directions. However,

this approach does not take hazard intensity on the routes

into account. A distributed evacuation guidance in large smart

buildings has been proposed by Marin et al. in [3]. The

authors consider building conditions and hazard intensity to

recommend the best evacuation route for each evacuee through

a smart sensor network and personal mobile devices. This

approach has some limitations: (1) exploiting sensor data from

evacuees’ smartphones in order to count the number of people

located at a certain space is a time consuming job (e.g., 15

minutes for batch processing as presented in their work); (2)

their smartphone-based approach requires evacuees to carry

devices for monitoring and tracking, which limits the usage

scope of their system.

The existing systems have considered distributed approaches

for finding evacuation routes in large smart buildings. The

distributed approaches are required for handling massive data

generated by a large number of devices (e.g., sensors, cameras)

in a smart building to provide an evacuation system with real-

time situation awareness [3]. Specifically, they separate an

evacuation procedure in a large smart building into multiple

small processes on each floor/sub-region. However, these ap-

proaches lack of the consideration of global view information,

which is about the hazard intensity and the crowd congestion

in the whole building. Consequently, in some cases, the evac-

uees following an evacuation route from a higher floor could

face a hazardous area or crowd congestion when they move to
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the lower floors. Another limitation of the existing approaches

is the late updating about the information of disaster events

and congestion since obtaining them often takes much time.

For instance, from a single image captured by a camera, using

CNN-based technique for counting people density on a route

segment of a building could take 100 milliseconds [4]. So,

the duration of 10 seconds is needed for counting people

on 100 route segments. Hence, determining only affected

regions/nodes which should be updated is necessary to reduce

the computation cost and quickly update the evacuation routes.

In this paper, we propose an LCDT (Length-Capacity-

Density-Trustiness) layered graph mode in order to find the

most effective evacuation routes dynamically in a distributed

manner without losing global information. We first represent a

network of smart indicators in a smart building as a distributed

graph, where the subnetwork of indicators on each floor is

represented as a subgraph, and a cross-graph is defined to

represent the connection between floors. We then consider the

factors: physical length, capacity, hazard intensity, and people

density to weight the distributed graph. Next, each subgraph

is locally evaluated to find the local evacuation routes on each

floor. Afterward, we update all the weights of the cross-graph

and find out effective global evacuation routes. Finally, we map

local evacuation routes and global evacuation routes to find the

final effective routes for every indicator. Moreover, a caching

strategy is proposed to improve the effectiveness of evacuation

routes. Our work makes the following contributions:

• We design a flexible and scalable evacuation system

for large smart buildings based on the integration of

IoT devices and a distributed graph based evaluation

technique (Section III).

• We propose a so-called LCDT model, which represents

the impact of disaster conditions and building conditions

on every route segment in the building (Section IV).

• We propose a distributed algorithm that exploits the

LCDT model for efficient evacuation route planning

(Section V).

• We propose a caching strategy which generates effective

evacuation routes more frequently in a given time, and

it increases situation awareness of dynamic routes to

improve their effectiveness (Section VI).

• We implement a simulation tool to evaluate and prove

that our approach outperforms other ones (Section VII).

We next cover related work on evacuation routing for large

buildings in the following section.

II. RELATED WORK

Building evacuation methods have been studied in very early

based on mathematical models [5], [6]. Dressler et al. [7]

applied network flow techniques to find a good exit gate for

evacuees in an emergency situation. A framework using the

genetic algorithm for the evacuation of large-scale pedestrian

facilities with multiple exit gates is presented by Abdelghany

et al. in [8].

In recent years, the weighted graph based systems using

IoT data in smart buildings have attracted much attention for

dynamic evacuation routing. Nikolaos et al. [1] proposed a

building evacuation system that computes the optimal evacu-

ation routes in a real-time manner. Their approach calculates

the weights of graphs based on physical length and hazard

intensity obtained from smart sensors. An extension of this

work with capacity consideration is presented by Desmet

et al. in [9]. Other designs of intelligent indoor emergency

evacuation systems is described in [10] [11].
A dynamic approach for optimal evacuation routing in

hazardous environments is described in [12]. The information

about density and hazard location is used to calculate optimal

paths. The authors have not considered the scalability of their

approach yet. Marin et al. [3] presented a distributed build-

ing evacuation system that considers building conditions and

hazard intensity to recommend the best evacuation route for

each localized evacuee. This approach has a limitation which is

the smartphones carrying dependence of the evacuees. Another

optimization technique can be applied to reduce computational

cost of evacuation routing on large graphs is using caches. Bal-

asubramanian et al. [13] proposed a multi-geography overlay

structure that supports weighted least cost path queries with

sources and destination in different geographies. The authors

use cached-paths, which are the most frequently accessed, to

prune search space. Other cache-based approaches for dynamic

routing are presented in [14] [15].

III. EMERGENCY EVACUATION SYSTEM FOR LARGE

SMART BUILDINGS

In this section, we present a design architecture of emer-

gency evacuation system for large smart buildings. Then, we

describe the modules of the proposed system in detail.

A. Overview of System Architecture
The proposed system architecture is given in Fig. 1, which

includes three main modules: Smart Indicators, Smart Guid-
ance Agents (SGAs), and Global Coordinator (GC). They

operate based on the IoT data obtained from sensors and

cameras. Specifically, a network of smart indicators on each

floor is presented as a subgraph, where a node represents a

smart indicator (called Indicator Node), and an edge represents

a route segment between two indicators. In the subgraphs, the

node represents a smart indicator at a stair of the building

is defined as a Stair Node, while the one represents a smart

indicator at an exit gate is defined as an Exit Node. The SGAs
perform weighting the edges of these subgraphs based on

disaster conditions and building conditions. Then, they locally

evaluate the cost of evacuation routes on their responsibility

floor from every Indicator Node to the Stair Nodes and

between Stair Nodes. Afterward, the cost between Stair Nodes
is used to globally evaluate the cost of evacuation routes from

every Stair Node to the Exit Nodes. The global information is

sent back to the SGAs to decide the optimal evacuation routes

from the Indicator Nodes to the Exit Nodes.

B. Smart Indicators
The main function of a smart indicator is direction guidance

based on effective evacuation routes which are found by the
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Fig. 1: Overview of system architecture.

corresponding SGA. It is performed by Guidance Director
component which communicates with the corresponding SGA

to receive the information about the next smart indicator.

Besides, the Guidance Director can use a backup path for

the guidance in case of disconnection with the SGA due to

disaster events (e.g., SGA is broken). For doing this, a backup

battery is required for the smart indicators.

C. Smart Guidance Agents

The SGAs are used for finding the evacuation routes in their

physical space. The main components of a SGA include:

• Weight Calculator: This component performs weighting

the impact of disaster and building conditions on the route

segments associated with the smart indicators. A weight

is calculated based on people density, location trustiness,

and route segment information between two indicators

which are gotten from Floor Info. The people density

on each route segment is estimated by Density Monitor
module. Meanwhile, the trustiness of a route segment is a

real number in the range [0,1] that indicates the likelihood

of the impact of a disaster event on the route segment,

which is estimated by Trustiness Estimator. The weights

of route segments will be used to update a weighted graph

constructed by Subgraph Builder.

• Local Evaluator: This component evaluates the cost of

evacuation routes from every Indicator Nodes to Stair
Nodes by applying Dijkstra algorithm on a weighted

subgraph generated by Subgraph Builder. It also calcu-

lates the cost between the Stair Nodes, and sends this

information to the GC. Note that, the next smart indicator

of each Indicator Node is not decided by Local Evaluator
because we need to use the global view information

before selecting the final effective evacuation routes.

• Evacuation Routes Selector: It is responsible for selecting

an effective evacuation route for each Indicator Node
in its subgraph. It combines the results from Local
Evaluator and Global Evaluator in order to select the

routes which have minimal cost from the Indicator Nodes
to the Stair Nodes.

D. Global Coordinator

This module evaluates the overall evacuation routes by

considering a graph of all Stair Nodes and Exit Nodes. The

objective of providing global view information is to help the

SGAs find the optimal routes which avoid hazardous and

crowd congestion areas. To obtain this objective, the GC uses

the following components.

• Cross-Graph Builder: It constructs a cross-graph of smart

indicators based on the information in Cross-Section Info.

In which, a node represents a Stair Node or an Exit Node,

and an edge represents a route between two Stair Nodes
or from a Stair Node to an Exit Node. The weights of

edges in the cross-graph are assigned and updated by the

information received from SGAs in every update interval

(e.g., 10s, 30s).

• Global Evaluator: It computes the shortest paths over the

cross-graph from every Stair Node to all Exit Nodes. The

information about the shortest paths from a Stair Node to

Exit Nodes is sent back to the corresponding Evacuation
Route Selector in the SGAs for making final decisions.

IV. LCDT-BASED WEIGHTED GRAPH MODEL FOR

PROVIDING SITUATION AWARENESS

We consider a network of smart indicators in the building

as an undirected graph G = (V,E), where V is a finite set

of nodes, and E is a finite set of edges, E ⊆ V × V . A

node in the graph G represents a smart indicator. An edge

(vi, vj) represents a route segment in the building between

two adjacent smart indicators vi and vj .

To evaluate evacuation routes, our system performs assign-

ing the evacuation costs on every edge of G. We can define a

weighted graph of G as follows.

Definition 1 - Weighted Graph: A graph Gw = (V,E, ω)
is a weighted graph if it is an undirected graph, and the

function ω defined on E maps each edge e ∈ E to a real

number.

As we mentioned in the previous section, SGAs will calcu-

late the weights of route segments. A weight value indicates

the impact of disaster conditions and building conditions to

the evacuation time on a route segment. The higher value of

the weight, the higher evacuation time is needed. In order

to estimate the weight of a route segment, we consider four

factors: (1) physical length, (2) physical width, (3) hazard

intensity, and (4) people density. Obviously, physical length

is a fixed value, and the longer physical length, the more

evacuation time is needed. For the physical width, it is used

together with physical length to model the capacity (the

number of people can move together) of a route segment. We

now consider a route segment R(i,j) between two adjacent

smart indicators vi and vj , which has the physical length L(i,j)

and the physical width H(i,j). Assuming that an evacuee needs

a minimum lane space X × Y (e.g., X = Y = 1.0m) for
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moving, where X,Y are the physical length and the physical

width of the lane space, respectively. So, the capacity of the

route segment, C(i,j), can be calculated by using Equation 1.

C(i,j) = (L(i,j)/X)× (H(i,j)/Y ) (1)

Next, we consider the hazard intensity on a route segment,

which is affected by a fire event. We model it by calculating

trustiness of location T(i,j) based on the data received from

a smoke sensor and a temperature sensor located at the route

segment. Since this is not the main topic of this paper, we refer

to our previous work which is a sensor-based approach for

calculating trustiness of location presented in [16]. The people

density of a route segment, denoted as D(i,j), is determined

by the number of people on that segment. It can be obtained

by implementing a CNN-based approach of people counting

from a single image captured by a camera [4].

Finally, we introduce a so-called LCDT model to calculate

the weight of every route segment R(i,j) using Equation 2.

ω(i,j) =
L(i,j)

T(i,j) × (C(i,j) −D(i,j) + 1)
(2)

In Equation 2, T(i,j) ∈ [0, 1], if T(i,j) = 1, there is no affected

of disaster event on R(i,j). In contrast, T(i,j) = 0 means that

the route segment R(i,j) has been strongly affected by disaster

event. As the result, when ω(i,j) get an infinite value, the

evacuation routes should not include R(i,j). We assume that

D(i,j) is always less than or equal to C(i,j).

V. A DISTRIBUTED APPROACH FOR FINDING DYNAMIC

EVACUATION ROUTES

In this section, we present a distributed approach for finding

optimal evacuation routes with global view consideration and

multiple levels of computational support (i.e. local and global

computation). To do this, we first define a distributed weighted

graph based on the concept of the weighted graph in the

previous section. We then propose the algorithms for local

and global evaluation of evacuation routes in SGAs and GC,

respectively.

Definition 2 - Distributed Weighted Graph: A distributed

weighted graph, Gd, for a weighted graph Gw = (V,E, ω) is

a set of N subgraphs {Gi = (Vi, Ei, ω) | i ≤ N,Vi ⊂ V,Ei ⊂
E} and a cross-graph Gc = (Vc, Ec, μ), where Ec is a set of

edges that connect subgraphs, called cross-edges; Vc is a set

of nodes that have cross-edges to or from subgraphs; μ is the

function defined on Ec which maps each edge (u, v) ∈ Ec to

a real number.

In our context, N subgraphs are corresponding to the

number of floors as well as the number of SGAs. Gi represents

a network of smart indicators at the floor ith, and Gc represents

a network of smart indicators located at stairs and exit gates

in the smart building.

Finding evacuation routes involves three phases as follows.

Local Evaluation. Algorithm 1 illustrates the procedure of

finding the options of evacuation routes for very indicator in

Algorithm 1 Local Evaluation

Input: A subgraph: Gi = (Vi, Ei, ω); a set of stair nodes in

the floor ith: Si

Output: W is a matrix which contains the weight between

pairs of stair nodes.

1: for each ind in Vi do
2: ind.NextOptions ← ∅;
3: end for
4: for each s in Si do
5: SPT ← Dijkstra(s, Gi); // SPT: Shortest Path Tree
6: for each ind in Vi do
7: weight2S ← GetWeight(ind,s,SPT );

8: next ← GetNextNode(ind,s,SPT );

9: ind.NextOptions.Add(< next, weight2S, s >);

10: if (ind ∈ Si and ind �= s) then
11: W(s,ind) ← weight2S;

12: end if
13: end for
14: end for
15: return W ;

Algorithm 2 Global Evaluation

Input: Gc = (Vc, Ec, μ) and a set of exit nodes Φ
Output: ω is a matrix which contains the weight from stair

nodes to exit nodes.

1: for each e in Φ do
2: SPTc ← Dijkstra(e, Gc);

3: for each s in Vc \ Φ do
4: weight2E ← GetWeight(s,e,SPTc);

5: ω(s,e) ← weight2E;

6: end for
7: end for
8: return ω;

a given subgraph. We have to find the effective routes from

all nodes in the subgraph to Stair Nodes or Exit Nodes. To

end this, we employ Dijkstra algorithm on the weighted graph

Gi with source nodes are a set of Stair Nodes Si, and the

destination nodes are all nodes in Vi, resulting in a complexity

of O(|S| · |Ei| · log|Vi|), with |S| is the number of Stair
Nodes in the Gi (every Gi has the same number of Stair
Nodes) (lines 4-5). We get the weight and the next node from

each indicator to each Stair Node during the searching (lines

7-8). This information is kept to be used for selecting the

final evacuation route for each indicator in Evacuation Route
Selection phase (line 9). Also, the weights among pairwise of

Stair Nodes are calculated and stored in a weight matrix W
(lines 10-12). The matrix W represents the weighted-based

shortest distances between Stair Nodes in Si (i > 1) or from

Stair Nodes to Exit Nodes in case of evaluation on G1 (exit

gates on the first floor). Once the local evaluation phase is

done, W is sent to the GC.

Global Evaluation. This phase performs evaluating the

effective evacuation routes from every Stair Node to every
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Algorithm 3 Evacuation Routes Selector

Input: Vi, {ω(s, e)}, with s ∈ Si and e ∈ Φ
Output: The next nodes for all indicator nodes in Vi

1: for each ind in Vi \ Φ do
2: ind.Weight2E ←∞;

3: for each opt in ind.NextOptions do
4: for each e in Φ do
5: weight← opt.weight2S + ω(opt.s, e);
6: if (weight < ind.Weight2E) then
7: ind.Weight2E ← weight;
8: ind.Next ← opt.next;
9: end if

10: end for
11: end for
12: end for

Exit Nodes. The main procedure is presented in Algorithm

2. The input of this algorithm is a cross-graph, Gc, which

is built as the following: (1) each Exit Node e is connected

to every Stair Node in G1; (2) each Stair Node in Gi, with

i > 1, is connected to each other; (3) the connections among

Stair Nodes in two adjacent floors are set up based on layout

information of the building which is stored in Cross-Section
Info component of GC; (4) the weights of the edges in Gc are

assigned based on cost matrices W received from SGAs. After

constructing the cross-graph, we apply Dijkstra algorithm to

find the effective evacuation routes from every Exit Node to

all Stair Nodes in Gc (lines 1-2). The weights from from every

Stair Node to every Exit Node are calculated and stored in a

weight matrix ω (lines 3-4). These weights will be sent back

to the corresponding SGA.

Evacuation Routes Selection. This is the last phase in

finding the optimal evacuation routes, and it is illustrated

in Algorithm 3. The algorithm calculates the weight-based

shortest distances from each node v ∈ Vi to all Exit Nodes
based on the weight matrices W and ω (lines 1-5). The

route which has minimal weight will be selected for each v
(lines 6-8). We formalize the evacuation routes selection as

the following equations:

P(v,et) = argminet{W(v,et)} if i = 1 (3)

P(v,Si
j ,et) = argminet{W(v,Si

j)+ω(Si
j ,et)} if i > 1 (4)

where et is an Exit Node and et ∈ e; Si
j is a Stair Node and

Si
j ∈ Si, j � |S|. Note that, the case of i = 1 means that we

are considering node v on the first floor. Based on the selected

route P , the next indicator is assigned for each node v in Vi.

VI. CACHING STRATEGY FOR EFFECTIVE DYNAMIC

EVACUATION ROUTES

A. Observation that Motivates Caching

We have a key observation that evacuees usually keep

following an effective route until a disaster event or crowd

congestion happens on that route. Thus, the weights of ef-

fective routes will be changed as the people moving while

other routes may be not much changed. Therefore, caching

the effective routes for updating their weights and finding only

affected indicators to immediately update their direction could

help reducing the computation cost of the proposed algorithm

as well as improving the efficiency of evacuation.

B. A Caching Strategy
We consider caching effective routes on every subgraph. It

is not difficult to find that caching the effective routes between

every pair of nodes or the long routes is impossible due to the

large size of the subgraphs and the cache might not fit into

available storage space. Therefore, choosing some nodes in the

subgraphs and caching the effective routes among them could

be preferred as a solution.
Choosing cache nodes. The fact that the stairs and exit

gates are located at positions where the evacuees can quickly

find out when disasters happen. During that time, if any stairs

and exit gates are not available, the evacuees have to find

other available ones. Thus, we first choose the stairs and exits

nodes in the subgraphs as the cache nodes and the routes

among them as the cache paths. However, in case of large

smart buildings, the distance between two stairs/exit nodes

u and v could be long, caching a long path between them

may not efficient as we discussed above. In that case, some

intermediate nodes u′ should also be chosen as the cache

nodes that satisfy the following conditions: (1) most of the

paths from u to v passing through these nodes (e.g. nodes at

intersections), (2) the distances d(u, u′) and d(u′, v) are less

than a given distance (e.g., 50 meters), and (3) the distance

d(u, v) = d(u, u′) + d(u′, v) is minimal.
Finding cache paths. We prefer using k paths between

each pair of cache nodes with priority consideration. We

identify top-k shortest paths such that they are dissimilar

with each other and their total weight is minimized. This is

necessary to switch from the current shortest path to another

path when disaster event or crowd congestion happens. Here,

we consider physical length and width between two indicator

nodes for weighting the edges of the subgraphs when finding

top-k shortest paths. A simple way to weight is using weight

function ω(i,j) = L(i,j)/H(i,j). We define the length of a

path P , denoted as L(P ), is the sum of the edge weights

in P . To find dissimilar paths, we first formally define the

path similarity.

Definition 3 - Path Similarity: The similarity between two

paths Pi and Pj , denoted as S(Pi, Pj), is a real number ranged

from 0 to 1 that indicates the ratio between the length of the

shared edges and the length of the union of edges.

There are several similarity functions that can be applied

to measure the path similarity. In this paper, we use cosine
similarity function, and the similarity between two paths Pi

and Pj can be formalized as follows.

S(Pi, Pj) =

∑
(u,v)∈(Pi∩Pj)

ω2
(u,v)

√ ∑
(a,b)∈Pi

ω2
(a,b)

√ ∑
(c,d)∈Pj

ω2
(c,d)

(5)
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Algorithm 4 Find k effective paths between two cache nodes

Input: A subgraph G, source s, destination t, number of

cache paths k, upper bound length θ
Output: The top-k efficient paths for caching

1: Ψ← FindAllPaths(s, t, G, θ)

2: Ψ← SortByLength(Ψ)

3: P ← SelectTopKShortestPaths(Ψ, k)

4: ϑ← ScoreKPaths(P)

5: Ω← Ψ \ P
6: for i = k to |Ω| do
7: for j = k − 1 to 0 do
8: P ′ ← P \ {P [j]}
9: P ′ ← P ′ ∪ {Ω[i]}

10: σ ← ScoreKPaths(P ′)
11: if σ > ϑ then
12: P ← P ′

13: ϑ← σ
14: end if
15: end for
16: end for

We can select k dissimilar paths by using path similarity. How-

ever, this is insufficient to guarantee the total length of these

k paths is minimized. Therefore, we use another parameter

named coefficient of length deviation. The coefficient of length

deviation between two paths Pi and Pj , denotes as Δ(Pi, Pj),
is calculated by using the following equation.

Δ(Pi, Pj) =
L(Pj)− L(Pi)

L(Pj)
(6)

Note that, the value of Δ(Pi, Pj) is in the range [0,1] since we

sort the list of paths by length so that L(Pj) is always greater

than or equal to L(Pi) before calculating the Δ(Pi, Pj).
We propose a heuristic algorithm for finding k effective

paths between two cache nodes as shown in Algorithm 4.

This algorithm evaluates possible sets of k paths by scoring

them based on the path similarity and the coefficient of length

deviation. The scoring procedure is presented in Algorithm 5.

Cache Structure. We cache k effective paths of each

pair of cache nodes, (a, b), into memory in the structure of

< (a, b), ρ, κ(a,b) > where κ(a,b) is list of k cache paths from

a to b; ρ is the current selected path from a to b and ρ ∈ κ(a,b).

We assume that the size of available cache memory of SGAs

is enough for storing their own cache paths.

C. Updating Evacuation Routes using Caches

The basic idea of using caches to update the evacuation

routes is that we check the conditions of all current selected

cache paths on SGAs in every given checking interval, τ ,

if any current selected cache path, ρ, has congestion and/or

strong affected by a disaster event (low trusted value), we will

select the next one in corresponding k cache paths. Then, the

indicators which belong to ρ will have their direction updated.

Here, the checking interval τ is much smaller than the update

interval of finding evacuation routes in the whole building.

Therefore, calculating and updating routes using cache paths

Algorithm 5 ScoreKPaths(P )

Input: A set of k paths P , the coefficient α of weighting path

similarity and coefficient of length deviation, α ∈ [0, 1]
Output: The score of P

1: ϑ← 0
2: for i = 0 to |P |-1 do
3: for j = i+ 1 to |P | do
4: ϑ← ϑ+α·(1−S(P [i], P [j]))+(1−α)·Δ(P [i], P [j])
5: end for
6: end for
7: return ϑ

Algorithm 6 Update Evacuation Routes with Caches

Input: A set of cache paths κ, the threshold for checking the

strong affecting of a disaster event ξ, the threshold for

checking crowd congestion β.

Output: Update direction for affected indicators

1: for each path ρ in κ do
2: a← the source node

3: b← the destination node

4: density ← 0
5: capacity ← 0
6: minTrust← 1
7: for each edge (i, j) in ρ do
8: density ← density +D(i,j)

9: capacity ← capacity + C(i,j)

10: if T(i,j) < minTrust then
11: minTrust← T(i,j)

12: end if
13: end for

/*Check conditions and update direction*/
14: if minTrust < ξ or density > β · capacity then
15: ρ← κ(a,b).Next

16: ϕ← list nodes in ρ
17: for i = 0 to |ϕ|-1 do
18: ϕ[i].Next = ϕ[i+ 1]

19: end for
20: end if
21: end for

do not take much time while quickly update effective routes

for evacuees. The procedure updating routes using caches is

shown in Algorithm 6.

VII. EVALUATION

To evaluate the effectiveness of our proposed approach, we

implemented a simulation tool for emergency evacuation in

smart buildings. We generate two graphs of indicators based

on the layouts of two large buildings. The first one is generated

by mimicking the layout of a real building named Donald

Bren Hall at University of California Irvine that is a six-

story building (called DBH). The second one is generated by

using a synthetic building that is a ten-story building (called

TSB) for evaluating the scalability of our approach as well

as for deeper test. The former has 3 stairs, 4 exit gates, and
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(a) Normal regions in Donald Bren Hall (b) Critical regions in Donald Bren Hall

(c) Normal regions in Ten-Story Building (d) Critical regions in Ten-Story Building

Fig. 2: Comparison of the effectiveness among evacuation methods with varied locations of disaster events

the area of each floor is approximately 2,300 square meters

(24,800 square feet). While the later one has 4 stairs and 3

exit gates, and the area of each floor is approximately 8,300

square meters (89,300 square feet). We assume that elevators

are not available during evacuation time.

We simulate fire events in the buildings in two scenarios:

(1) the fire event occurs at normal regions and (2) the fire

event occurs at critical regions. In the normal case, the fire

event affects a stair on the first floor and its close regions.

Regarding the critical case, the fire event affects a stair on

the first floor as well as 2 exit gates and their close regions.

We assume that the impact of fire events on route segments

are estimated and assigned by random trustiness values in the

range [0.1,0.9]. The fire spreading is simulated by randomly

updating trusted values and expanding the affected regions

with a given spreading rates in every ten seconds of the

first minute after the fire event happened. We consider fire

spreading problem in smart buildings as the future work to

make our approach more realistic in evacuation systems. The

number of evacuees on each floor in DBH is 200, while the

one in TSB is 250. The position of evacuees are randomly

generated that each person is close to an indicator, and there

are not more than 20 people near an indicator. The initial speed

of each person is also randomly generated which ranges from

2.0 m/s to 5.0 m/s. The moving step of each person is updated

in every 200 milliseconds.

In the first experiment, we evaluate the efficiency of

our proposed approach by comparing with other evacuation

approaches. We implement our LCDT-based approach for

evacuation routing with global view information consider-

ation (called LCDT&GV) and the improvement algorithm

using caches (called LCDT&GV+Cache). We also implement

three other approaches: Shortest-Path-Length based approach

which evacuees use the nearest stairs to pass through ex-

its (called Nearest Stairs), Length-Capacity-based approach

(called LC) which mentioned in [2], and Length-Trustiness-

based approach (called LT) in [1]. The update interval for

calculating the weights of all route segments in the building

is set to 10s for our approaches and LT approach. With

our LCDT&GV+Cache approach, the checking interval for

using caches is set to 2s; the coefficient α for weighting path

similarity and coefficient of length deviation is set to 0.5; the

threshold for checking the strong affecting of a disaster event

ξ equals to 0.3; the threshold for checking crowd congestion β
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Fig. 3: The impact of update interval on evacuation system.

equals to 0.5. We run simulations on a computer with 32.0 GB

of RAM and 12 CPU cores, and each SGA is run on different

CPU in parallel.

Figure 2 illustrates the comparison of the effectiveness

among evacuation methods. In overall, our LCDT-based ap-

proaches outperform other approaches in all simulation sce-

narios with both the evacuated amount and the total evacuation

time. In which, our approaches take less time, which the per-

formance is up to 2 times faster compared to other approaches,

to evacuate all the people. Note that, in the simulations, we

assume that all people could be evacuated with unlimited

simulation time. Obviously, using Nearest Stairs approach

is not efficient in most of the simulation scenarios because

when the evacuees choose the nearest stairs, they could face

with the area having fire events. As a result, they have to

find other stairs or exit gates, and congestion could occur in

this case, which causes the time-consuming. In the respect

of LC approach, since it considers the length and capacity

of the routes, it almost achieves a better result comparing

to Nearest Stairs approach. However, its performance is not

good enough because it still does not take the disaster areas

into account. Therefore, similar with Nearest Stairs approach,

the evacuees will need more time to pass to other routes,

which the drawback is significantly shown in Fig. 2(d). With

LT approach in the cases that disaster events happened at

critical regions, it achieves better performance compared to LC

and Nearest Stairs because it considers the impact of disaster

events on the routes. Nevertheless, in the case that disaster

event happened at the normal regions, its performance is not

much different with LC approach. Moreover, at the later stage

of the evacuation time, LT could not perform a better result

comparing to LC as shown in Fig. 2(a) and 2(c), since with

the latter there is not much congestion like with the former.

Regarding our LCDT&GV approach, we achieve better results

because we consider more necessary parameters with global

view information. Furthermore, LCDT&GV+Cache approach,

which employs cache paths, enhances the efficiency of the

original one in all the cases.

The second experiment investigates how the update interval

of the weights in evacuation system affects the efficiency of

our LCDT&GV approach. To do this, we tested with four

update intervals: 1, 10, 30, and 60 second(s) in case of fire

events happened at critical regions. We run simulations on TSB

dataset with the conditions described above. For each update

interval, we run simulation three times and get the average

value of both evacuation time and evacuated amount. Figure

3 shows the impact of the update interval on the effectiveness

of the evacuation system. We observed that a small update

interval could help the system to reduce the evacuation time

while increasing the number of evacuees passing to exit gates

in each time span. For instance, the evacuated amount at time

span 400(s) is around 2000, 1900, 1700, 1600 corresponding

to the update intervals 1s, 10s, 30s, and 60s, respectively. As

a result, the total of evacuation time with the small update

intervals is less than the larger ones.

VIII. CONCLUSION

This paper proposed a scalable approach for dynamic evacu-

ation routing by using an LCDT weighted graph model, which

is built upon the disaster information and building conditions.

We designed a flexible and scalable evacuation system for

large smart buildings based on the integration of IoT devices

and a distributed graph based evaluation technique. We then

proposed a distributed algorithm that exploits the LCDT model

for dynamic evacuation routing. Moreover, we presented a

caching strategy to improve the performance of the proposed

approach. We evaluated our proposal on both real building and

synthetic building with an evacuation simulator. Experimental

results indicated that our approach outperforms other ones in

the aspect of the evacuation time reduction and the maximum

number of people being evacuated in each time span.
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